Plenary
Speaker
Intracellular Proteolysis, Basic Science
and Application
Robert Huber
Germany
Within cells or subcellular compartments misfolded
and/or short-lived regulatory proteins are degraded by protease machines,
cage-forming multi-subunit assemblages. Their proteolytic active sites
are sequestered within the particles and located on the inner walls.
Access of protein substrates is regulated by protein subcomplexes
or protein domains which may assist in substrate unfolding dependent
of ATP. Five protease machines will be described displaying different
subunit structures, oligomeric states, enzymatic mechanisms, and regulatory
properties.
Proteasome
Groll, M., Ditzel, L., Löwe, J., Stock, D., Bochtler, M., Bartunik,
H. D. and Huber, R. (1997) Structure of 20S proteasome from yeast
at 2.4 Å resolution. Nature 386, 463-471.
Groll, M., Heinemeyer, W., Jäger, S., Ullrich, T., Bochtler,
M., Wolf, D. H. and Huber, R. (1999) The catalytic sites of 20S proteasomes
and their role in subunit maturation: A mutational and crystallographic
study. Proc. Natl. Acad. Sci. USA 96, 10976-10983.
Groll, M., Bajorek, M., Köhler, A., Moroder, L., Rubin, D. M.,
Huber, R., Glickman, M. H. and Finley, D. (2000) A gated channel into
the proteasome core particle. Nature Struct. Biol. 7, 1062-1067.
Groll, M., Schellenberg, B., Bachmann, A. S., Archer, C. R., Huber,
R., Powell, T. K., Lindow, S., Kaiser, M. and Dudler, R. (2008) A
plant pathogen virulence factor inhibits the eukaryotic proteasome
by a novel mechanism. Nature 452, 755-758.
HslV/HslU
Bochtler, M., Hartmann, C., Song, H. K., Bourenkov, G., Bartunik,
H. and Huber, R. (2000) The structure of HslU and the ATP-dependent
protease HslU-HslV. Nature 403, 800-805.
Song, H. K., Hartmann, C., Ramachandran, R., Bochtler, M., Behrendt,
R., Moroder, L. and Huber, R. (2000) Mutational studies on HslU and
its docking mode with HslV. Proc. Natl. Acad. Sci. USA 97, 14103-14108.
Ramachandran, R., Hartmann, C., Song, H. J., Huber, R. and Bochtler,
M.(2002) Functional interactions of HslV(ClpQ) with the ATPase HslU(ClpY).
Proc. Natl. Acad. Sci. USA 99, 7396-7401.
Tricorn
Brandstetter, H., Kim, J. S., Groll, M. and Huber, R. (2001) Crystal
structure of the tricorn protease reveals a protein disassembly line.
Nature 414, 466-470.
Kim, J. S., Groll, M., Musiol, H. J., Behrendt, R., Kaiser, M., Moroder,
L., Huber, R. and Brandstetter H. (2002) Navigation inside a protease:
substrate selection and product exit in the tricorn protease from
Thermoplasma acidophilum. J. Mol. Biol. 324, 1041-1050.
Goettig, P., Groll, M., Kim, J. S., Huber, R. and Brandstetter, H.
(2002) Structures of the tricorn interacting aminopeptidase F1 with
different ligands explain its catalytic mechanism. EMBO J. 21, 5343-5352.
Dipeptidyl peptidase IV
Engel, M., Hoffmann, T., Wagner, L., Wermann, M., Heiser, U., Kiefersauer,
R., Huber, R., Bode, W., Demuth, H. U. and Brandstetter, H. (2003)
The crystal structure of dipeptidyl peptidase IV (CD26) reveals its
functional regulation and enzymatic mechanism.Proc. Natl. Acad. Sci.
USA 100, 5063-5068.
DegP(HtrA)
Krojer, T., Garrido-Franco, M., Huber, R., Ehrmann, M., and Clausen,
T. (2002) Crystal structure of DegP (HtrA) reveals a new protease-chaperone
machine. Nature 416, 455-459.
Krojer, T., Pangerl, K., Kurt, J., Sawa, J., Stingl, C., Mechtler,
K., Huber, R., Ehrmann, M. and Clausen, T. (2008). Interplay of PDZ
and protease domain of DegP ensures efficient elimination of misfolded
proteins. Proc. Natl. Acad. Sci. USA 105, 7702-7707.
Krojer, T., Sawa, J., Schäfer, E., Saibil, H. R, Ehrmann, M,
and Clausen, T. (2008).
http://www.ncbi.nlm.nih.gov/pubmed/18496527?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
Structural basis for the regulated protease and chaperone function
of DegP.
Nature 453, 885-890. |